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Technological advances allow for tunable lateral confinement of cold dipolar excitons in coupled quantum
wells. We consider theoretically the Josephson effect between exciton condensates in two traps separated by a
weak link. The flow of the exciton supercurrent is driven by the dipole-energy difference between the traps.
The Josephson oscillations may be observed after ensemble average of the time correlation of photons sepa-
rately emitted from the two traps. The fringe visibility is controlled by the trap coupling and is robust against
quantum and thermal fluctuations.
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I. INTRODUCTION

The Josephson effect is a macroscopic coherent phenom-
enon which has been observed in systems as diverse as
superconductors,1 superfluid Helium,2 Bose-Einstein conden-
sates in trapped ultracold atomic gases.3 Since Josephson os-
cillations appear naturally when two spatially separated mac-
roscopic wave functions are weakly coupled, they have been
predicted for bosonic excitations in solids as well, such as
polaritons4,5 and excitons.6 However, unlike the polaritons,
which have a photonic component allowing for easy
detection,7 excitons stay dark unless they recombine radia-
tively. So far, it is unclear how the exciton Josephson effect
could be observed. In this paper, we propose an experiment.

Condensed excitons are predicted to emit coherent light.8

If Josephson oscillations occur between two exciton traps, in
principle they can be probed by measuring the interference
of the beams separately emitted from the traps. However, in
the time interval before recombination, there are too few
photons emitted for an adequate signal-to-noise ratio, and
one has to average the signal over many replicas of the same
experiment.9 We will show that such ensemble averaging
blurs the signature of the Josephson effect except in the rel-
evant case of exciton “plasma” oscillations.10 For the latter
the dipole energy difference between the traps modulates the
visibility � of interference fringes, providing a means for
detection.

The paper is organized as follows: in Sec. II we introduce
the double quantum-well system and illustrate a feasible
scheme to manipulate electrically the exciton phase. After
setting the theoretical framework �Sec. III�, we discuss the
proposed correlated photon-counting experiment �Sec. IV�
and provide an estimate for its key parameters �Sec. V�.

II. ELECTRICAL CONTROL OF THE
EXCITON PHASE

Consider a double quantum well where electrons and
holes are separately confined in the two layers. In experi-
ments aiming at Bose-Einstein condensation of excitons,
electron-hole pairs are optically generated off resonance, left
to thermalize, form excitons, and, at sufficiently low tem-
perature T and high density, condense before radiative

decay.11 Let z be the growth axis of the two wells separated
by distance d. The electrons in the conduction band and
holes in the valence-band move in the planes z=d ,0, respec-
tively �Fig. 1�a��. Let �a�x ,y ,0 , t� and �b

†�x ,y ,d , t� denote
the respective hole and electron creation operators, with the
vacuum being the semiconductor ground state with no exci-
tons. In the experiments,11 an electric field Fz is applied
along z to suppress interlayer tunneling, thereby quenching
the exciton recombination. Fabrications12 of electrostatic
traps with suitably located electrodes to provide lateral con-
finement for the excitons have been implemented. The
double quantum well is sandwiched between two spacer lay-
ers, providing insulation from planar electrodes lithographed
on both sides of the coupled structure. Each electrode con-
trols a tunable gate voltage, Vg�x ,y ,z�, which localizes in a
region of the xy plane the field component along z,
Fz�x ,y ,z�=−�Vg�x ,y ,z� /�z, while Fx and Fy are small and
can be neglected as well as the dependence of Fz on z. The
vertical field Fz�x ,y� makes the electrostatic potential energy
of the exciton dipole depend on the lateral position,
UX�x ,y�=−edFz�x ,y� �e�0� �cf. Fig. 1�b��. In this way, po-
tential traps for excitons are designed with great flexibility,
with in situ control of the height, width, and shape of the
potential barriers.12

First, we focus on the quasiequilibrium situation before
radiative recombination, where excitons condense in two
coupled electrostatic traps, both within the condensate coher-
ence length. Figure 1�b� depicts the exciton potential profile
UX�x ,y=0� along the x axis, with a link between two iden-
tical traps. The potential barrier allows tunneling between the
condensates �1�x ,y , t� and �2�x ,y , t� in the two traps.13 The
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FIG. 1. �a� Double quantum-well energy profile along the
growth direction z. �b� Exciton potential profile of the double-trap
system along x. �c� Arrangement for measuring the time correlation
of the emitted photons from the two traps.
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optical coherence in a single trap is of the form

��x,y,t� = ��a
†�x,y,0,t��b�x,y,d,t�� , �1�

where � . . . � denotes quantum and thermal average. In the
limit naB

2 �1, with aB being the two-dimensional effective
Bohr radius and n the exciton density, ��x ,y , t� is the mac-
roscopic wave function for the center-of-mass motion of
excitons,14 which may be written in the form

��x,y,t� = �nse
i�, �2�

with ns being the density of the exciton condensate and � the
phase.15 For a gauge transformation of the gate potential
Vg→Vg−c−1���t� /�t, which leaves the field Fz unaltered,
the field operators � gain a phase

�a → �a exp� ie

	c
��x,y,0,t�	 ,

�b → �b exp� ie

	c
��x,y,d,t�	 . �3�

The macroscopic wave function, by Eq. �1�, also gains a
phase

� → � +
e

	c
���z = d,t� − ��z = 0,t�� . �4�

Hence, the frequency of time oscillation of the condensate is
given by the electrostatic energy of the exciton dipole in the
external field,16 U=−edFz

� = ��0� +
1

	
edFzt , �5�

with ��0� being the time-independent zero-field value.17 In
the absence of the bilayer separation of the electrons and the
holes, their gauge phases gained in the electric field would
cancel each other resulting in no time dependence driven by
U. Equation �5� shows that the experimentally controllable
dipole-energy difference between the two traps depicted in
Fig. 1�b�, 
U=−ed�Fz1−Fz2�, drives the relative phase be-
tween the two condensates, thereby creating Josephson oscil-
lations as a means for measuring the Josephson tunnel be-
tween the traps.

III. EXCITON JOSEPHSON OSCILLATIONS

We next introduce the usual two-mode description of in-
tertrap dynamics based on the Gross-Pitaevskii �GP�
equation.4–6,10,18,19 Exciton-exciton correlation20 beyond the
GP mean field may be neglected due to the repulsive char-
acter of the dipolar interaction between excitons in coupled
quantum wells. The condensate total wave-function solution
is

��x,y,t� = �1�x,y,N1�ei�1 + �2�x,y,N2�ei�2, �6�

where both the trap population Ni�t� and the condensate
phase �i�t� possess the entire time dependence for the ith
trap �i=1,2�, and �i�x ,y ,Ni� is a real quantity, with


 dx
 dy�i
2�x,y,Ni� = Ni�t� . �7�

The dynamics of the GP macroscopic wave function
��x ,y , t� depends entirely on the temporal evolution of two
variables, the population imbalance k�t�= �N1−N2� /2 and the
relative phase ��t�=�1−�2 of the two condensates. Here we
consider a time interval much shorter than the exciton life-
time �10–100 ns� and ignore the spin structure. Therefore,
the total population is approximately constant, N1�t�+N2�t�
=N. The equations of motion for the canonically conjugated
variables 	k and � are derived from the effective Hamil-
tonian

HJ = Ec
k2

2
+ 
Uk −

�J

2
�N2 − 4k2 cos � , �8�

under the condition k�N �Ref. 10�. Ec=2d
1 /dN1 is the
exciton “charging” energy of one trap, where 
1 is the
chemical potential of trap 1, whereas �J is the Bardeen
single-particle tunnelling energy

�J =
	2

m

 dy��1� ��2

�x
� − �2� ��1

�x
�	

x=0
, �9�

where m is the exciton mass. The single-particle orbital
�i�x ,y� is defined through �i�x ,y�=�Ni�i�x ,y�.

The various dynamical regimes associated to certain ini-
tial conditions �k�0� ,��0��, including � oscillations and
macroscopic quantum self-trapping, are exhaustively
discussed in Refs. 18. Two cases are specially relevant

A. ac Josephson effect

Under the conditions 
U�NEc /2, 
U��J, one easily
obtains

��t� = −

U

	
t + ��0�, k̇ =

�JN

2	
sin � . �10�

Equation �10� shows that, analogously to the case of two
superconductors separated by a thin barrier, if the phase dif-
ference � between the condensates is not a multiple of �, an

exciton supercurrent 2k̇ flows across the barrier. Remarkably,
in the presence of an electric field gradient along z, an exci-
ton flux oscillates back and forth between the two traps, with
frequency 
U /	. As an exciton goes through the barrier, it
exchanges with the field the dipole energy acquired or lost in
the tunneling process. The analogy with the ac Josephson
effect for superconductors is clear: in that case a bias voltage
V is applied across the junction, and the energy 2eV is ex-
changed between field and Cooper pairs, as the latter expe-
rience a potential difference of V when penetrating the po-
tential barrier.

B. Plasma oscillations

This case concerns small oscillations around the equilib-
rium position �k ,��eq= �0,0�. Hamiltonian �8� may then be
linearized into the form
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HJ =
k2

2
�2

�J

N
+ Ec� +

1

4
�JN�2 + 
Uk −

�JN

2
. �11�

It follows that both k and � oscillate in time with plasma
frequency

�J =
1

	
��J�NEc/2 + �J� . �12�

Note that 
U displaces the equilibrium position from
�k ,��eq= �0,0� to

�k,��eq = �− 
UN�J/2�	�J�2,0� . �13�

IV. CORRELATED PHOTON-COUNTING EXPERIMENT

Figure 1�c� illustrates the correlated photon-counting
setup which we propose to probe Josephson oscillations. The
detector measures the intensity I��� of the sum of the two
beams separately emitted from the traps. A delay time � is
induced in one of the two beams, as in Ref. 9. The fields are
simply proportional to the order parameters �i of the traps.
In fact, ��x ,y , t� is associated with a macroscopic electric-
dipole moment, P�t�= x̂Px�t�� iŷPy�t�, which couples to pho-
tons: Px�t�=
dxdyx��x ,y , t�, and similarly for Py. The
built-in dipole �P�t���0 oscillates with frequency
�
+EX� /	, where EX is the optical gap minus the exciton
binding energy, and 
 accounts for exciton-exciton
interaction.8 This macroscopic oscillating dipole is equiva-
lent to a noiseless current, which radiates a coherent field.21

Therefore, the measured intensity I��� is I���=2I0
�1+ �cos ������, assuming that the fields emitted from the
two traps have the same magnitude �and intensity I0� but
different relative phase �, which is evaluated at the delayed
time �.22 I��� may be written as

I��� = 2I0�1 + � cos �0���� , �14�

where �0��� is the phase averaged over many measurements,
defined by the condition �sin�����−�0�����=0 and

� = �cos����� − �0����� �15�

is the fringe visibility, i.e., the normalized peak-to-valley ra-
tio of fringes, �= �Imax− Imin� / �Imax+ Imin�, with Imax�Imin� be-
ing the maximum �minimum� value of I���, and 0���1.

Equation �14� has a few important caveats. Since I��� is
an average, the temporal inhomogeneous effect will blur the
interference fringes, i.e., ��1. Other dephasing mechanisms
include exciton recombination and inelastic exciton-phonon
scattering,9 as well as inelastic9 and elastic23 exciton-exciton
scattering, which in first instance may all be neglected for
short �, low T, and naB

2 �1, respectively. The most immedi-
ate caveat is that the exciton condensates in decoupled traps
must acquire a relative phase if initially they condense sepa-
rately without a definite phase relation. This scenario is
analogous to the case of interference between independent
laser sources first discussed by Glauber21 and later studied
experimentally for matter waves.24 Even though a one-shot
measurement with sufficient resolution would display
fringes, the relative phase �0��� is also subject to intrinsic

dephasing effects by quantum fluctuations.21 The latter are
significant noise sources which affect �, when � and k are
quantized into canonically conjugated quantum variables
whereas in the GP theory used so far they were classical
variables whose fluctuations where neglected.

In the following, we quantize Hamiltonian �8� in order to
properly evaluate �= �cos�����−�0����� as a quantum statis-
tical average in finite traps. Therefore, we follow Ref. 25 and

introduce the commutator ��̂ , k̂�= i. The operator k̂ now ap-
pearing in the quantized version of Hamiltonian �8� takes the
form −i� /��, whereas the ground-state wave function is de-
fined in the space of periodical functions of � with period
2�. If condensate oscillations are mainly coherent, the vari-
ance in � is small and the visibility is approximated by �
=1− 1

2 ��
��2�.
The most interesting case concerns plasma oscillations.

For 
U=0, the ground state of the quantized version of the
harmonic-oscillator Hamiltonian �11� is a Gaussian, with
�0=0, independent from �, and minimal spreading �
�2�
��Ec /2�JN�1/2. Therefore, the interferometer output is time
independent, I=2I0�1+��, showing constructive interfer-
ence, I�2I0, with �=1− �Ec /8�JN�1/2. Not surprisingly, the
visibility is controlled by the ratio Ec /�JN, reaching the
maximum �=1 as Ec /�JN→0. In fact, � is given by the
balance between the competing effects of tunnelling
���JN�, which enforces a well-defined intertrap phase, and
inverse compressibility ��Ec�, which favors the formation of
separate number states in the two traps, thus separating the
two macroscopic wave functions.

A small finite value of 
U in Eq. �11� displaces the equi-
librium position of the harmonic oscillator. Noticeably, the
ground state is a coherent state with non-null evolution of the
average phase in time

�0��� = −

U

	�J
sin��J�� , �16�

whereas � is unchanged. This key feature allows for directly
monitoring �-dependent plasma oscillations of frequency �J
through the photon-correlation measurement �cf. Figure 2�.
We evaluate the effect of thermal fluctuations on � via the
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FIG. 2. �Color online� Beam intensity I��� / I0 vs delay time �,
for 
U /	�J=0.2,0.5 �dashed and solid lines, respectively�. �a� T
=0 and �=1,0.8 �black and red �light gray� lines, respectively�. �b�
��T=0�=0.94 and kBT /	�J=0,1 ,2 �black, red �light gray� and
blue �dark gray� lines, respectively�.
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formula ��T�=�n�n exp�−�En� /�nexp�−�En�, where �
=1 /kBT, kB is the Boltzmann constant, 2��n−1�= ��
��2�n is
the variance of � in the nth excited state whose energy is En.
At low T, the excited states may be approximated as those of
the harmonic oscillator, giving

��T� = 1 −� Ec

2�JN
�1

2
+

1

e�	�J − 1
� . �17�

The above results are summarized by the formula

I��� = 2I0�1 + ��T�cos� 
U

	�J
sin �J��	 , �18�

which is valid for Ec /�JN�1. For small dipole-energy varia-
tions, 
U /	�J�1, the oscillating part within the square
brackets of Eq. �18� may be written as
−��T� /2�
U /	�J�2sin2 �J�. This shows that the visibility
��T� of fringes, which oscillate like sin2 �J�, is modulated
by the experimentally tunable factor �
U /	�J�2 /2. The de-
pendence of I��� on 
U is illustrated in Fig. 2 for two values
of 
U /	�J. As 
U /	�J is increased �from 0.2 �dashed
lines� to 0.5 �solid lines��, the amplitude of oscillations of
I��� shows a strong nonlinear enhancement, providing a clear
signature of Josephson oscillations. The oscillation ampli-
tudes are larger for higher values of � �cf. Figure 2�a�� and
fairly robust against thermal smearing �cf. Figure 2�b��. In
fact, Fig. 2�b� shows that the oscillation of I��� is still clearly
resolved for temperatures as high as T�	�J /kB. At even
higher temperatures ��T� displays anharmonic effects25 with
��T�→0 as T→�.

The maximum peak-to-valley ratio of fringes attainable
for plasma oscillations is limited by the condition that 
U
shifts the equilibrium position �k ,��eq of the oscillator, as
given in Eq. �13�, slightly with respect to the origin:

U�J / �	�J�2�1. For example, by taking the values of �J
and �J estimated in Sec. V and imposing the condition

U�J / �	�J�2=5 ·10−2, one has 
U /	�J�12. Figure 3 dis-
plays I��� vs � for 
U /	�J=4,12 �dashed and solid lines,
respectively�. In both cases the range of amplitude oscilla-
tions of I is very close to the ideal interval �0,4I0�. There-
fore, the intensity oscillations should be easily detected, even
at finite temperatures �cf. the black �dark gray� and red �light

gray� lines, corresponding to kBT /	�J=0,2, respectively�.
For large values of 
U /	�J higher overtones appear in the
oscillations of I��� �solid lines in Fig. 3�, in addition to the
fundamental frequency �J, which is present for any finite
value of 
U �cf. dashed lines in Fig. 3�.

V. ESTIMATE OF THE VISIBILITY AND
PLASMA FREQUENCY

We assess the feasibility of the experiment by estimating
the parameters of Eq. �18�. Both � and �J depend on Ec and
�J. We evaluate the latter by first solving the GP equation for
a two-dimensional harmonic trap within the Thomas-Fermi
approximation10 and then by matching the wave functions of
the two traps by using the semiclassical method of Ref. 19.
The coupling constant g=4�de2 /�r appearing in the nonlin-
ear term of the GP equation, multiplied by ns, is the energy
shift of an exciton added to a parallel-plate capacitor with
surface charge density ens ��r is the quantum-well dielectric
constant�.11 We obtain

Ec = 2	�0N1
−1/2� d

aB
�1/2

, �19�

where 	�0 is the energy quantum of the trap and aB
=	2�r /me2, as well as

�J �
u2

21/3�
�aB

d
�2/3

	�0N1
−2/3e−S0�tanh S0/2�−1. �20�

Here u=0.397, and S0�21/2��V0−
� /	�0 for a intertrap
quartic barrier of height V0, with V0−
�V0 �Fig. 1�b��. At
density n=2.5·1010 cm−2, evaluated at the trap center, exci-
tons are still weakly interacting �naB

2 �0.1 with aB�20 nm�.
By taking GaAs parameters, d=12 nm, N1=103, one has
	�0=11 
eV, 
1=440 
eV, and a condensate radius of
1.6 
m. The barrier height V0, as well as S0, should be as
low as possible. For S0=1 we obtain high visibility
��=0.94 at T=0, cf. Figure 2�b��, as well as a plasma fre-
quency �J /2� of 0.41 GHz, whose period ��2 ns� is an
order of magnitude shorter than the exciton lifetime. Note
that 	�J=1.7 
eV�	�0, hence the plasma oscillation is
decoupled from single-trap modes.10 The temperature asso-
ciated to 	�J, T=20 mK, is very low but within experimen-
tal reach.

The ac Josephson effect cannot be observed within our
scheme. In fact, for large values of 
U, the term proportional
to cos � appearing in the Hamiltonian �8� may be neglected
in first approximation, and the ground-state wave function is
a plane wave, �2��−1/2exp�in̄��, where n̄ is the integer clos-
est to −
U /Ec. Since the probability density, �2��−1, is con-
stant, the phase is distributed randomly, and the visibility is
zero. Therefore, the correction to � coming from the inclu-
sion in the calculation of the term neglected in Eq. �8� will be
small and fragile against fluctuations.
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FIG. 3. �Color online� Beam intensity I��� / I0 vs delay time �,
for 
U /	�J=4,12 �dashed and solid lines, respectively� and
kBT /	�J=0,2 �black �dark gray� and red �light gray� lines, respec-
tively� with ��T=0�=0.94.
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VI. CONCLUSION

In conclusion, exciton plasma oscillations may be mea-
sured by the time correlation of photon emission from two
sides of the Josephson junction through electrical control of
fringe visibility. Our findings pave the way to the observation
of the exciton Josephson effect.
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